Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.387
Filtrar
2.
Front Immunol ; 15: 1293706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646540

RESUMO

Major histocompatibility complex Class II (MHCII) proteins initiate and regulate immune responses by presentation of antigenic peptides to CD4+ T-cells and self-restriction. The interactions between MHCII and peptides determine the specificity of the immune response and are crucial in immunotherapy and cancer vaccine design. With the ever-increasing amount of MHCII-peptide binding data available, many computational approaches have been developed for MHCII-peptide interaction prediction over the last decade. There is thus an urgent need to provide an up-to-date overview and assessment of these newly developed computational methods. To benchmark the prediction performance of these methods, we constructed an independent dataset containing binding and non-binding peptides to 20 human MHCII protein allotypes from the Immune Epitope Database, covering DP, DR and DQ alleles. After collecting 11 known predictors up to January 2022, we evaluated those available through a webserver or standalone packages on this independent dataset. The benchmarking results show that MixMHC2pred and NetMHCIIpan-4.1 achieve the best performance among all predictors. In general, newly developed methods perform better than older ones due to the rapid expansion of data on which they are trained and the development of deep learning algorithms. Our manuscript not only draws a full picture of the state-of-art of MHCII-peptide binding prediction, but also guides researchers in the choice among the different predictors. More importantly, it will inspire biomedical researchers in both academia and industry for the future developments in this field.


Assuntos
Apresentação de Antígeno , Biologia Computacional , Antígenos de Histocompatibilidade Classe II , Peptídeos , Humanos , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptídeos/imunologia , Biologia Computacional/métodos , Ligação Proteica , Aprendizado Profundo , Algoritmos
3.
Nature ; 625(7995): 593-602, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093017

RESUMO

Emerging data have shown that previously defined noncoding genomes might encode peptides that bind human leukocyte antigen (HLA) as cryptic antigens to stimulate adaptive immunity1,2. However, the significance and mechanisms of action of cryptic antigens in anti-tumour immunity remain unclear. Here mass spectrometry of the HLA class I (HLA-I) peptidome coupled with ribosome sequencing of human breast cancer samples identified HLA-I-binding cryptic antigenic peptides that were noncanonically translated by a tumour-specific circular RNA (circRNA): circFAM53B. The cryptic peptides efficiently primed naive CD4+ and CD8+ T cells in an antigen-specific manner and induced anti-tumour immunity. Clinically, the expression of circFAM53B and its encoded peptides was associated with substantial infiltration of antigen-specific CD8+ T cells and better survival in patients with breast cancer and patients with melanoma. Mechanistically, circFAM53B-encoded peptides had strong binding affinity to both HLA-I and HLA-II molecules. In vivo, administration of vaccines consisting of tumour-specific circRNA or its encoded peptides in mice bearing breast cancer tumours or melanoma induced enhanced infiltration of tumour-antigen-specific cytotoxic T cells, which led to effective tumour control. Overall, our findings reveal that noncanonical translation of circRNAs can drive efficient anti-tumour immunity, which suggests that vaccination exploiting tumour-specific circRNAs may serve as an immunotherapeutic strategy against malignant tumours.


Assuntos
Neoplasias da Mama , Melanoma , Peptídeos , Biossíntese de Proteínas , RNA Circular , Animais , Feminino , Humanos , Camundongos , Antígenos de Neoplasias/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Espectrometria de Massas , Melanoma/genética , Melanoma/imunologia , Melanoma/mortalidade , Melanoma/patologia , Peptídeos/genética , Peptídeos/imunologia , Perfil de Ribossomos , RNA Circular/genética , RNA Circular/metabolismo , Análise de Sobrevida
5.
Nature ; 621(7980): 868-876, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674077

RESUMO

Immune checkpoint blockade (ICB) benefits some patients with triple-negative breast cancer, but what distinguishes responders from non-responders is unclear1. Because ICB targets cell-cell interactions2, we investigated the impact of multicellular spatial organization on response, and explored how ICB remodels the tumour microenvironment. We show that cell phenotype, activation state and spatial location are intimately linked, influence ICB effect and differ in sensitive versus resistant tumours early on-treatment. We used imaging mass cytometry3 to profile the in situ expression of 43 proteins in tumours from patients in a randomized trial of neoadjuvant ICB, sampled at three timepoints (baseline, n = 243; early on-treatment, n = 207; post-treatment, n = 210). Multivariate modelling showed that the fractions of proliferating CD8+TCF1+T cells and MHCII+ cancer cells were dominant predictors of response, followed by cancer-immune interactions with B cells and granzyme B+ T cells. On-treatment, responsive tumours contained abundant granzyme B+ T cells, whereas resistant tumours were characterized by CD15+ cancer cells. Response was best predicted by combining tissue features before and on-treatment, pointing to a role for early biopsies in guiding adaptive therapy. Our findings show that multicellular spatial organization is a major determinant of ICB effect and suggest that its systematic enumeration in situ could help realize precision immuno-oncology.


Assuntos
Imunoterapia , Linfócitos T , Neoplasias de Mama Triplo Negativas , Humanos , Linfócitos B/imunologia , Biópsia , Linfócitos T CD8-Positivos/imunologia , Granzimas/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos CD15/metabolismo , Terapia Neoadjuvante , Medicina de Precisão , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto , Linfócitos T/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/terapia
6.
Nature ; 618(7967): 1033-1040, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316667

RESUMO

Most clinically applied cancer immunotherapies rely on the ability of CD8+ cytolytic T cells to directly recognize and kill tumour cells1-3. These strategies are limited by the emergence of major histocompatibility complex (MHC)-deficient tumour cells and the formation of an immunosuppressive tumour microenvironment4-6. The ability of CD4+ effector cells to contribute to antitumour immunity independently of CD8+ T cells is increasingly recognized, but strategies to unleash their full potential remain to be identified7-10. Here, we describe a mechanism whereby a small number of CD4+ T cells is sufficient to eradicate MHC-deficient tumours that escape direct CD8+ T cell targeting. The CD4+ effector T cells preferentially cluster at tumour invasive margins where they interact with MHC-II+CD11c+ antigen-presenting cells. We show that T helper type 1 cell-directed CD4+ T cells and innate immune stimulation reprogramme the tumour-associated myeloid cell network towards interferon-activated antigen-presenting and iNOS-expressing tumouricidal effector phenotypes. Together, CD4+ T cells and tumouricidal myeloid cells orchestrate the induction of remote inflammatory cell death that indirectly eradicates interferon-unresponsive and MHC-deficient tumours. These results warrant the clinical exploitation of this ability of CD4+ T cells and innate immune stimulators in a strategy to complement the direct cytolytic activity of CD8+ T cells and natural killer cells and advance cancer immunotherapies.


Assuntos
Linfócitos T CD4-Positivos , Morte Celular , Imunoterapia , Inflamação , Neoplasias , Microambiente Tumoral , Humanos , Células Apresentadoras de Antígenos/imunologia , Antígeno CD11c/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Morte Celular/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Inata , Inflamação/imunologia , Interferons/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Células Mieloides/imunologia , Células Th1/citologia , Células Th1/imunologia
7.
Cells ; 12(8)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190011

RESUMO

Leishmaniasis is a parasitic disease caused by different species of Leishmania and transmitted through the bite of sand flies vector. Macrophages (MΦ), the target cells of Leishmania parasites, are phagocytes that play a crucial role in the innate immune microbial defense and are antigen-presenting cells driving the activation of the acquired immune response. Exploring parasite-host communication may be key in restraining parasite dissemination in the host. Extracellular vesicles (EVs) constitute a group of heterogenous cell-derived membranous structures, naturally produced by all cells and with immunomodulatory potential over target cells. This study examined the immunogenic potential of EVs shed by L. shawi and L. guyanensis in MΦ activation by analyzing the dynamics of major histocompatibility complex (MHC), innate immune receptors, and cytokine generation. L. shawi and L. guyanensis EVs were incorporated by MΦ and modulated innate immune receptors, indicating that EVs cargo can be recognized by MΦ sensors. Moreover, EVs induced MΦ to generate a mix of pro- and anti-inflammatory cytokines and favored the expression of MHCI molecules, suggesting that EVs antigens can be present to T cells, activating the acquired immune response of the host. Since nano-sized vesicles can be used as vehicles of immune mediators or immunomodulatory drugs, parasitic EVs can be exploited by bioengineering approaches for the development of efficient prophylactic or therapeutic tools for leishmaniasis.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Interações Hospedeiro-Patógeno , Imunomodulação , Leishmania guyanensis , Leishmania , Ativação de Macrófagos , Macrófagos , Leishmania guyanensis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Leishmania/imunologia , Animais , Camundongos , Linhagem Celular , Macrófagos/imunologia , Macrófagos/parasitologia , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/parasitologia , Exossomos/imunologia , Exossomos/parasitologia , Peptídeo Hidrolases/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Citocinas/metabolismo , Imunidade Inata
8.
Nature ; 617(7962): 807-817, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198490

RESUMO

Microbial organisms have key roles in numerous physiological processes in the human body and have recently been shown to modify the response to immune checkpoint inhibitors1,2. Here we aim to address the role of microbial organisms and their potential role in immune reactivity against glioblastoma. We demonstrate that HLA molecules of both glioblastoma tissues and tumour cell lines present bacteria-specific peptides. This finding prompted us to examine whether tumour-infiltrating lymphocytes (TILs) recognize tumour-derived bacterial peptides. Bacterial peptides eluted from HLA class II molecules are recognized by TILs, albeit very weakly. Using an unbiased antigen discovery approach to probe the specificity of a TIL CD4+ T cell clone, we show that it recognizes a broad spectrum of peptides from pathogenic bacteria, commensal gut microbiota and also glioblastoma-related tumour antigens. These peptides were also strongly stimulatory for bulk TILs and peripheral blood memory cells, which then respond to tumour-derived target peptides. Our data hint at how bacterial pathogens and bacterial gut microbiota can be involved in specific immune recognition of tumour antigens. The unbiased identification of microbial target antigens for TILs holds promise for future personalized tumour vaccination approaches.


Assuntos
Antígenos de Neoplasias , Bactérias , Proteínas de Bactérias , Glioblastoma , Linfócitos do Interstício Tumoral , Fragmentos de Peptídeos , Humanos , Antígenos de Neoplasias/imunologia , Proteínas de Bactérias/imunologia , Vacinas Anticâncer/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular Tumoral , Microbioma Gastrointestinal/imunologia , Glioblastoma/imunologia , Glioblastoma/patologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos HLA/imunologia , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Fragmentos de Peptídeos/imunologia , Simbiose , Bactérias/imunologia , Bactérias/patogenicidade
9.
J Reprod Immunol ; 156: 103817, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753935

RESUMO

Immune system aberrations are suggested to be an important factor in the pathophysiology of unexplained secondary recurrent pregnancy loss (sRPL). The objective was to investigate if the sex ratio of the firstborn child in sRPL patients differs from the background population and whether the sex of the firstborn child has a negative impact on the pregnancy prognosis alone and/or in combination with carriage of male-specific minor histocompatibility (H-Y) restricting HLA class II alleles. From January 2016 to October 2022, 582 patients with unexplained RPL were admitted to the RPL Center of Western Denmark and continuously followed-up. HLA-DRB1 and -DQB1 typing was performed as part of the routine diagnostic work-up. In sRPL patients, a history of a firstborn boy was significantly more frequent than in the Danish background population and was associated with significantly lower odds of a successful reproductive outcome in the first pregnancy after admission compared to a firstborn girl (OR=0.41, 95% CI: 0.20-0.83, p = 0.014). The odds of a successful reproductive outcome were enhanced in patients carrying ≥ 1 H-Y-restricting HLA class II alleles with a first-born girl compared to a firstborn boy (OR=3.33, 95% CI: 1.40-7.88, p = 0.005), while no difference in successful reproductive outcome was seen in sRPL patients not carrying these alleles (OR=1.20, 95% CI: 0.33-4.43, p = 0.781). The sex ratio of children born after RPL was similar to the Danish background population. These findings confirm previous findings and suggests that a harmful immune response triggered by H-Y-antigen exposure during a previous pregnancy in preconditioned women may cause sRPL.


Assuntos
Aborto Habitual , Antígeno H-Y , Feminino , Humanos , Masculino , Gravidez , Alelos , Antígeno H-Y/genética , Histocompatibilidade , Cadeias HLA-DRB1/genética , Prognóstico , Antígenos de Histocompatibilidade Classe II/imunologia
10.
Immunol Lett ; 251-252: 75-85, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332824

RESUMO

Immunology is a rapidly evolving field of research with sophisticated models and methods. However, detailed data on total immune cell counts and population distributions remain surprisingly scarce. Nevertheless, recently established quantitative approaches could help us understand the overall complexity of the immune system. Here, we studied a major histocompatibility complexclass II - enhanced green fluorescent protein knock-in mouse model to precisely identify and manipulate lymphoid structures. By combining flow cytometry with light sheet microscopy, we quantified MHC II+ populations of the small intestine and associated individual mesenteric lymph nodes, with 36.7 × 106 cells in lamina propria, 3.0 × 105 cells in scattered lymphoid tissue and 1.1 × 106 cells in Peyer's patches. In addition to these whole-organ cell counts, we assessed approximately 1 × 106 total villi in the small intestine and 450 scattered lymphoid tissue follicles. By direct noninvasive microscopic observation of a naturally fully translucent mouse organ, the cornea, we quantified 12 ± 4 and 35 ± 7 cells/mm2 Langerhans- and macrophage-like populations, respectively. Ultimately, our findings show that flow cytometry with quantitative imaging data analysis enables us to avoid methodological discrepancies while gaining new insights into the relevance of organ-specific quantitative approaches for immunology.


Assuntos
Tecido Linfoide , Nódulos Linfáticos Agregados , Animais , Camundongos , Mucosa Intestinal , Intestino Delgado , Linfonodos , Antígenos de Histocompatibilidade Classe II/imunologia
11.
Cell Immunol ; 378: 104561, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35738135

RESUMO

Our previous studies demonstrated increased serum levels of macrophage migration inhibitory factor (MIF-1) and its homologue, MIF-2, in males during MS progression; and that genetically high-MIF-expressing male subjects with relapsing multiple sclerosis (MS) had a significantly greater risk of conversion to progressive MS than lower-MIF-expressing males and females. However, female MS subjects with severe disease expressed higher levels of CD74, the common MIF-1/MIF-2 receptor, on blood cells. In the murine model of MS, experimental autoimmune encephalomyelitis (EAE), both male and female mice lacking MIF-1 and/or MIF-2 were clinically improved during development of moderately severe disease, thus implicating both homologs as co-pathogenic contributors. The current study using MIF-deficient mice with severe acute EAE revealed a highly significant reduction of EAE scores in MIF-1-deficient females, in contrast to only minor and delayed reduction of clinical signs in MIF-1-deficient males. However, clinical EAE scores and factor expression were strongly suppressed in males and further reduced in females after treatment of WT and MIF-1-, MIF-2- and MIF-1/2-DUAL-deficient female and male mice with a MHCII DRα1-MOG-35-55 molecular construct that competitively inhibits MIF-1 & MIF-2 signaling through CD74 as well as T cell activation. These results suggest sex-dependent differences in which the absence of the MIF-1 and/or MIF-2 genotypes may permit stronger compensatory CD74-dependent EAE-inducing responses in males than in females. However, EAE severity in both sexes could still be reduced nearly to background (a "near cure") with DRα1-MOG-35-55 blockade of compensatory MIF and CD74-dependent factors known to attract peripheral inflammatory cells into the spinal cord tissue.


Assuntos
Encefalomielite Autoimune Experimental , Hormônio Inibidor da Liberação de MSH , Fatores Inibidores da Migração de Macrófagos , Esclerose Múltipla , Animais , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Hormônio Inibidor da Liberação de MSH/metabolismo , Hormônio Inibidor da Liberação de MSH/uso terapêutico , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal
12.
Cancer Discov ; 12(6): 1449-1461, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35255120

RESUMO

Immune escape represents a major driver of acute myeloid leukemia (AML) reemergence after allogeneic hematopoietic cell transplantation (allo-HCT), with up to 40% of relapses prompted by nongenomic loss of HLA class II expression in leukemia cells. By integrative analysis of gene expression, DNA methylation, and chromatin accessibility in paired diagnosis/relapse primary samples and in the respective patient-derived xenografts (PDX), we identify the polycomb repressive complex 2 (PRC2) as a key epigenetic driver of this immune escape modality. We report that loss of expression of HLA class II molecules is accompanied by a PRC2-dependent reduction in chromatin accessibility. Pharmacologic inhibition of PRC2 subunits rescues HLA class II expression in AML relapses in vitro and in vivo, with consequent recovery of leukemia recognition by CD4+ T cells. Our results uncover a novel link between epigenetics and leukemia immune escape, which may rapidly translate into innovative strategies to cure or prevent AML posttransplantation relapse. SIGNIFICANCE: Loss of HLA class II expression represents a frequent mechanism of leukemia posttransplantation relapse. Here we identify PRC2 as the main epigenetic driver of this immune escape modality and show that its chemical inhibition can reinstate a proficient graft-versus-leukemia effect, providing an innovative rationale for personalized epigenetic immunotherapies. See related commentary by Köhler and Zeiser, p. 1410. This article is highlighted in the In This Issue feature, p. 1397.


Assuntos
Leucemia Mieloide Aguda , Complexo Repressor Polycomb 2 , Cromatina/genética , Cromatina/imunologia , Epigênese Genética , Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/imunologia , Recidiva , Evasão Tumoral/genética
13.
J Immunol ; 208(5): 1076-1084, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181639

RESUMO

Upon virus invasion of the host, APCs process Ags to short peptides for presentation by MHC class II (MHC-II). The recognition of virus-derived peptides in the context of MHC-II by CD4+ T cells initiates the adaptive immune response for virus clearance. As a survival instinct, viruses have evolved mechanisms to evade Ag processing and presentation. In this study, we discovered that IFN-γ induced endogenous MHC-II expression by a sea perch brain cell line through the STAT1/IFN regulatory factor 1 (IRF1)/CIITA signaling pathway. Furthermore, viral hemorrhagic septicemia virus infection significantly inhibited the IFN-γ-induced expression of IRF1, CIITA, MHC-II-α, and MHC-II-ß genes. By contrast, although STAT1 transcript was upregulated, paradoxically, the STAT1 protein level was attenuated. Moreover, overexpression analysis revealed that viral hemorrhagic septicemia virus N protein blocked the IFN-γ-induced expression of IRF1, CIITA, MHC-II-α, and MHC-II-ß genes, but not the STAT1 gene. We also found out that N protein interacted with STAT1 and enhanced the overall ubiquitination level of proteins, including STAT1 in Lateolabrax japonicus brain cells. Enhanced ubiquitination of STAT1 through K48-linked ubiquitination led to its degradation through the ubiquitin-proteasome pathway, thereby inhibiting the biological function of STAT1. Our study suggests that aquatic viruses target Ag presentation in lower vertebrates for immune evasion as do mammalian viruses.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Evasão da Resposta Imune/imunologia , Novirhabdovirus/imunologia , Nucleoproteínas/metabolismo , Percas/imunologia , Fator de Transcrição STAT1/metabolismo , Imunidade Adaptativa/imunologia , Animais , Apresentação de Antígeno/imunologia , Encéfalo/citologia , Encéfalo/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Genes MHC da Classe II/genética , Antígenos de Histocompatibilidade Classe II/biossíntese , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/imunologia , Novirhabdovirus/metabolismo , Proteínas Nucleares/metabolismo , Percas/virologia , Transdução de Sinais/imunologia , Transativadores/metabolismo , Transcrição Gênica/genética , Ubiquitinação/fisiologia
14.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165181

RESUMO

Staphylococcus aureus is a foremost bacterial pathogen responsible for a vast array of human diseases. Staphylococcal superantigens (SAgs) constitute a family of exotoxins from S. aureus that bind directly to major histocompatibility complex (MHC) class II and T cell receptors to drive extensive T cell activation and cytokine release. Although these toxins have been implicated in serious disease, including toxic shock syndrome, the specific pathological mechanisms remain unclear. Herein, we aimed to elucidate how SAgs contribute to pathogenesis during bloodstream infections and utilized transgenic mice encoding human MHC class II to render mice susceptible to SAg activity. We demonstrate that SAgs contribute to S. aureus bacteremia by massively increasing bacterial burden in the liver, and this was mediated by CD4+ T cells that produced interferon gamma (IFN-γ) to high levels in a SAg-dependent manner. Bacterial burdens were reduced by blocking IFN-γ, phenocopying SAg-deletion mutant strains, and inhibiting a proinflammatory response. Infection kinetics and flow cytometry analyses suggested that this was a macrophage-driven mechanism, which was confirmed through macrophage-depletion experiments. Experiments in human cells demonstrated that excessive IFN-γ allowed S. aureus to replicate efficiently within macrophages. This indicates that SAgs promote bacterial survival by manipulating the immune response to inhibit effective clearing of S. aureus Altogether, this work implicates SAg toxins as critical therapeutic targets for preventing persistent or severe S. aureus disease.


Assuntos
Interferon gama/imunologia , Infecções Estafilocócicas/imunologia , Superantígenos/imunologia , Animais , Bacteriemia , Enterotoxinas/imunologia , Exotoxinas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Staphylococcus aureus/patogenicidade , Linfócitos T/imunologia , Fatores de Virulência/imunologia
15.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35226074

RESUMO

The development of autoimmune diseases following SARS-CoV-2 infection, including multisystem inflammatory syndrome, has been reported, and several mechanisms have been suggested, including molecular mimicry. We developed a scalable, comparative immunoinformatics pipeline called cross-reactive-epitope-search-using-structural-properties-of-proteins (CRESSP) to identify cross-reactive epitopes between a collection of SARS-CoV-2 proteomes and the human proteome using the structural properties of the proteins. Overall, by searching 4 911 245 proteins from 196 352 SARS-CoV-2 genomes, we identified 133 and 648 human proteins harboring potential cross-reactive B-cell and CD8+ T-cell epitopes, respectively. To demonstrate the robustness of our pipeline, we predicted the cross-reactive epitopes of coronavirus spike proteins, which were recognized by known cross-neutralizing antibodies. Using single-cell expression data, we identified PARP14 as a potential target of intermolecular epitope spreading between the virus and human proteins. Finally, we developed a web application (https://ahs2202.github.io/3M/) to interactively visualize our results. We also made our pipeline available as an open-source CRESSP package (https://pypi.org/project/cressp/), which can analyze any two proteomes of interest to identify potentially cross-reactive epitopes between the proteomes. Overall, our immunoinformatic resources provide a foundation for the investigation of molecular mimicry in the pathogenesis of autoimmune and chronic inflammatory diseases following COVID-19.


Assuntos
Biologia Computacional/métodos , Epitopos/química , Epitopos/imunologia , SARS-CoV-2/imunologia , Software , Proteínas Virais/química , Proteínas Virais/imunologia , Algoritmos , Reações Cruzadas/imunologia , Epitopos de Linfócito B , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Modelos Moleculares , Mimetismo Molecular , Redes Neurais de Computação , Proteoma , Proteômica/métodos , Relação Estrutura-Atividade , Navegador
16.
Front Immunol ; 13: 820152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154138

RESUMO

Teleost adaptive immune systems have evolved with more flexibility than previously assumed. A particularly enigmatic system to address immune system modifications in the evolutionary past is represented by the Syngnathids, the family of pipefishes, seahorses and seadragons. These small fishes with their unique male pregnancy have lost the spleen as an important immune organ as well as a functional major histocompatibility class II (MHC II) pathway. How these evolutionary changes have impacted immune cell population dynamics have up to this point remained unexplored. Here, we present the first immune cell repertoire characterization of a syngnathid fish (Syngnathus typhle) using single-cell transcriptomics. Gene expression profiles of individual cells extracted from blood and head-kidney clustered in twelve putative cell populations with eight belonging to those with immune function. Upregulated cell marker genes identified in humans and teleosts were used to define cell clusters. While the suggested loss of CD4+ T-cells accompanied the loss of the MHC II pathway was supported, the upregulation of specific subtype markers within the T-cell cluster indicates subpopulations of regulatory T-cells (il2rb) and cytotoxic T-cells (gzma). Utilizing single-cell RNA sequencing this report is the first to characterize immune cell populations in syngnathids and provides a valuable foundation for future cellular classification and experimental work within the lineage.


Assuntos
Antígenos de Histocompatibilidade Classe II/genética , Análise de Célula Única , Animais , Linfócitos T CD4-Positivos/imunologia , Peixes , Antígenos de Histocompatibilidade Classe II/imunologia , Subpopulações de Linfócitos T/imunologia , Transcriptoma
17.
Front Immunol ; 13: 832889, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154154

RESUMO

The potential effect of emerging SARS-CoV-2 variants on vaccine efficacy is an issue of critical importance. In this study, the possible impact of mutations that facilitate virus escape from the cytotoxic and the helper cellular immune responses in the new SARS-CoV-2 Omicron variant of concern was analyzed for the 551 and 41 most abundant HLA class I and II alleles, respectively. Computational prediction showed that almost all of these 592 alleles, which cover >90% of the human population, contain enough epitopes without escape mutations in the emerging SARS-CoV-2 Omicron variant of concern. These data suggest that both cytotoxic and helper cellular immune protection elicited by currently licensed vaccines are virtually unaffected by the highly contagious SARS-CoV-2 Omicron variant of concern.


Assuntos
COVID-19/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Celular/imunologia , SARS-CoV-2/imunologia , Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Imunogenicidade da Vacina/imunologia , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
18.
Front Immunol ; 13: 835454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154160

RESUMO

Mass spectrometry (MS) based immunopeptidomics is used in several biomedical applications including neo-epitope discovery in oncology, next-generation vaccine development and protein-drug immunogenicity assessment. Immunopeptidome data are highly complex given the expression of multiple HLA alleles on the cell membrane and presence of co-immunoprecipitated contaminants. The absence of tools that deal with these challenges effectively and guide the analysis and interpretation of this complex type of data is currently a major bottleneck for the large-scale application of this technique. To resolve this, we here present the MHCMotifDecon that benefits from state-of-the-art HLA class-I and class-II predictions to accurately deconvolute immunopeptidome datasets and assign individual ligands to the most likely HLA molecule, allowing to identify and characterize HLA binding motifs while discarding co-purified contaminants. We have benchmarked the tool against other state-of-the-art methods and illustrated its application on experimental datasets for HLA-DR demonstrating a previously underappreciated role for HLA-DRB3/4/5 molecules in defining HLA class II immune repertoires. With its ease of use, MHCMotifDecon can efficiently guide interpretation of immunopeptidome datasets, serving the discovery of novel T cell targets. MHCMotifDecon is available at https://services.healthtech.dtu.dk/service.php?MHCMotifDecon-1.0.


Assuntos
Epitopos de Linfócito T/imunologia , Antígenos HLA-DR/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Linhagem Celular , Bases de Dados de Proteínas , Humanos , Ligantes , Espectrometria de Massas , Peptídeos/metabolismo , Ligação Proteica
19.
J Immunol ; 208(3): 660-671, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022276

RESUMO

Invasive candidiasis has high mortality rates in immunocompromised patients, causing serious health problems. In mouse models, innate immunity protects the host by rapidly mobilizing a variety of resistance and tolerance mechanisms to systemic Candida albicans infection. We have previously demonstrated that exogenous IL-33 regulates multiple steps of innate immunity involving resistance and tolerance processes. In this study, we systematically analyzed the in vivo functions of endogenous IL-33 using Il33 -/- mice and in vitro immune cell culture. Tubular epithelial cells mainly secreted IL-33 in response to systemic C. albicans infection. Il33 -/- mice showed increased mortality and morbidity, which were due to impaired fungal clearance. IL-33 initiated an innate defense mechanism by costimulating dendritic cells to produce IL-23 after systemic C. albicans infection, which in turn promoted the phagocytosis of neutrophils through secretion of GM-CSF by NK cells. The susceptibility of Il33 -/- mice was also associated with increased levels of IL-10, and neutralization of IL-10 resulted in enhanced fungal clearance in Il33 -/- mice. However, depletion of IL-10 overrode the effect of IL-33 on fungal clearance. In Il10 -/- mouse kidneys, MHC class II+F4/80+ macrophages were massively differentiated after C. albicans infection, and these cells were superior to MHC class II-F4/80+ macrophages that were preferentially differentiated in wild-type mouse kidneys in killing of extracellular hyphal C. albicans Taken together, our results identify IL-33 as critical early regulator controlling a serial downstream signaling events of innate defense to C. albicans infection.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Imunidade Inata/imunologia , Interleucina-10/metabolismo , Subunidade p19 da Interleucina-23/metabolismo , Interleucina-33/imunologia , Animais , Candidíase/microbiologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Hospedeiro Imunocomprometido/imunologia , Interleucina-10/genética , Interleucina-33/genética , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Fagocitose/imunologia , Transdução de Sinais/imunologia
20.
Sci Immunol ; 7(67): eabf7777, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34995099

RESUMO

Resident macrophages orchestrate homeostatic, inflammatory, and reparative activities. It is appreciated that different tissues instruct specialized macrophage functions. However, individual tissues contain heterogeneous subpopulations, and how these subpopulations are related is unclear. We asked whether common transcriptional and functional elements could reveal an underlying framework across tissues. Using single-cell RNA sequencing and random forest modeling, we observed that four genes could predict three macrophage subsets that were present in murine heart, liver, lung, kidney, and brain. Parabiotic and genetic fate mapping studies revealed that these core markers predicted three unique life cycles across 17 tissues. TLF+ (expressing TIMD4 and/or LYVE1 and/or FOLR2) macrophages were maintained through self-renewal with minimal monocyte input; CCR2+ (TIMD4−LYVE1−FOLR2−) macrophages were almost entirely replaced by monocytes, and MHC-IIhi macrophages (TIMD4−LYVE1−FOLR2−CCR2−), while receiving modest monocyte contribution, were not continually replaced. Rather, monocyte-derived macrophages contributed to the resident macrophage population until they reached a defined upper limit after which they did not outcompete pre-existing resident macrophages. Developmentally, TLF+ macrophages were first to emerge in the yolk sac and early fetal organs. Fate mapping studies in the mouse and human single-cell RNA sequencing indicated that TLF+ macrophages originated from both yolk sac and fetal monocyte precursors. Furthermore, TLF+ macrophages were the most transcriptionally conserved subset across mouse tissues and between mice and humans, despite organ- and species-specific transcriptional differences. Here, we define the existence of three murine macrophage subpopulations based on common life cycle properties and core gene signatures and provide a common starting point to understand tissue macrophage heterogeneity.


Assuntos
Receptor 2 de Folato/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Receptores CCR2/imunologia , Proteínas de Transporte Vesicular/imunologia , Animais , Estágios do Ciclo de Vida/imunologia , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores CCR2/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...